
4aval Research Laboratory
Washington, DC 20376-5000 NRL Report 8974 August 18, 1986

Design Activity in the
Software Cost Reduction Project

A. F. NORCIO AND L. J. CHMURA

Computer Science and Systems Branch
Information Technology Division

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 8974
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)
Naval Research Laboratory Code 7592

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Surface Naval (If applicable)

Weapons Systems Command Code 613
&c. ADDRESS (City, State,and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.Washington, DC 20363 63756A AMC DN155-191

11. TITLE (Include Security Classification)

Design Activity in the Software Cost Reduction Project

12. PERSONAL AUTHOR(S)
Norcio, Anthony F. and Chmura, Louis J.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Month,Day) 15. PAGE COUNT
Interim FROM 8/85 TO 2/86 1986 August 18 23

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software technology evaluation Software design activity

Data collection Software Cost Reduction (SCR) project

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Since 1978, the goal of the Software Cost Reduction (SCR) project has been to demonstrate the effective-
ness of certain software engineering techniques for developing complex software. The application is the
redevelopment of the operational flight program for the A-7E aircraft. Also since then, the Software Technol-
ogy Evaluation (STE) project has been monitoring SCR project activity in order to provide an objective evalua-
tion of the SCR methodology. SCR project activity data are collected from SCR personnel on a weekly basis.
Over 55,000 hours of SCR design, code, test, and other activity data have been captured and recorded in a
computer data base. Analyses of SCR module design data show that there are parameters that can be used to
characterize and predict design progress. One example is the ratio between cumulative design discussing and
cumulative design creating activities. This ratio is referred to as the Progress Indicator Ratio (PIR) and seems
to be an accurate metric for design completeness. This and other results suggest that discussion activity among
software engineers may play a major role in the software design process and may be a leading indicator of
design activity progress.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c- OFFICE SYMBOL
Anthony F. Norcio (202) 767-3249 Code 7592

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

*US; Gonnnt Phstln OM=i 19W1407447

i

r-

>::

l:-.

rrnrz;:

I

I

CONTENTS

INTRODUCTION... 1

The Software Cost Reduction Project .. 1....
The Software Technology Evaluation Project ... 1

DATA COLLECTION .. 1

Module Development Activities 4
Other Activities .. 4

OVERVIEW OF SCR PROJECT ACTIVITIES .. 4

ANALYSES OF MODULE DESIGN DATA 10

RESULTS ... 14

CONCLUSIONS ... 18

ACKNOWLEDGMENTS ... 18

REFERENCES ... 19

iii

DESIGN ACTIVITY IN THE
SOFTWARE COST REDUCTION PROJECT

INTRODUCTION I

This report presents the results of an investigation of design activities of the software engineers
working on the Software Cost Reduction (SCR) project. One purpose of this study is to offer insights
into understanding the design process of complex software. A second purpose is to identify parameters
that characterize and predict design progress. The data analyses suggest that at least one parameter
does characterize and predict design progress under the SCR approach.

The Software Cost Reduction Project

Since 1978, the Naval Research Laboratory in cooperation with the Naval Weapons Center has
been redeveloping version 2 of the operational flight program for the A-7E aircraft [1]. Software
engineering techniques such as formal requirements specification, information hiding [21, abstract inter-
faces [31, and cooperating sequential processes [41 are being used. This effort is referred to as .the SCR
project.

The goals of the SCR project are to (a) demonstrate the feasibility of using selected software
engineering techniques in developing complex, real-time software; and (b) provide a model for
software design. The claimed advantage of the selected software engineering techniques is that they
can facilitate the development of easy-to-change software. Heninger et al. [51 provide complete discus-
sion of the project's software requirements. Britton and Parnas [61 give a detailed description of the
module design structure.

The Software Technology Evaluation Project

The goal of the Software Technology Evaluation (STE) project is to evaluate alternative software
development technologies.* The approach is to monitor, evaluate, and compare software development
technologies used in different software projects. The monitoring and evaluating processes consist of
goal-directed data collection and analyses techniques [7]. One of the tasks of the STE project is to pro-
vide the basis for an objective evaluation of the methodology used in the SCR project. The two
projects are, however, separate research investigations each with its own goals, staff, and funding.

DATA COLLECTION

Since 1978, all SCR project engineers have been required to submit weekly reports on their
project activity hours. The activity data are collected on a form called the Weekly Activity Report, the
current version of which is presented in Chart 1. The boxes on the form represent different project
activities.

A submitted report is usually rather sparse; typically, it has only a few boxes marked with hours
spent on project activities during the week. A copy of a completed report form is presented in Chart 2.
Once a weekly activity report is given to STE project personnel, it is validated and entered into a com-
puter data base. An instruction sheet explaining how to report weekly activity is provided to each SCR
engineer.

Manuscript approved March 5, 1986.
'This work is currently funded by the DoD STARS Program as Measurement Area Task G-06.

1

sCn Project: Weekly RctIuity Report

Your name:

ACTIVITY AREA

Software Structures

Module GuIde
Uses Hlerarchy

Software Modules
Hardware Hiding

Extended Computer

DevIce Interfae

Behavior Hiding
Function Driver

Shared Services

Software DecIsion
ApplIcation Dale Types..

PhysIcal Model

Filter Behavior

Data Banker

System Oeneratlon

Software Utility

(Se. reverse shid)

5
C.,

3C

0. i

-
O z

5
C.,

Date: Friday.
ACTIVITY HOtJItS

u. o S dE FI */C/TO Code

o I.L.~I e *L CL

Front Side

I.. j . ,..,....
. :: :... ...
I : : :: , :,:,:: : :,::

I :: I !: : : : : : : :

Tast

L?
9- 0.

ACTIVITY AREA l rll- l

Software Testing

reneral
Subset ...

At IlVI1Y 11011115
.I'n!Un cil .m _ I CILIrICoda Test.. -.r6 -~-

.I: __._ -

(8 Mey 1985)

Reverse Side

Chart I - Weekly Activity Report form

tQ

MISCELLANEOUS ACTIVITY HOURS

Project Control .

Software Requirements DocumentD.

Travel .
TechnoIog9 Transfer

Other:

Non SCR (OptIonal):

z

z
C'

DeSIen PSel

_.

.I I I I
I I I
I I I
I I
I I

I

I I

I III II

t

NRL REPORT 8974

_ _ ,, :, _ _~~~~~~

~~ _ _A_
_ i _ _ 5 4~~

::~~~~~~~~~~i _ _)_ . ,. \ ,Ii
i .. , _ _ ~~~~~II 0)C_~~~ - i 0)....*..

l * |t_ _ _ - ... 0

_=__ . Ii I It....t-= K -. . -

_ __ _ _ _ II J _ _ _ 9,

3)

. _ , :W:: | l | | |: i& | § | ii §| g |§ | §g | || 1,1 1 11 { ..)

X X ., . , .ts~~~~~~~~llll lllrlrgullllrllllrllllll U~~~~~~~~~~~~~~~0

, 1 1 1 1 1 1 IT I:1 1 1 1 1 1 1 F 12
.a tM II IE I F.171 1111 11 1 1 11 11 1 1 10

^ ,^ s'v:.:.,::......,.,, ., lll.:. ,ll 11;11111111111 11

S i * "_ , ... , ,_ ^1lll~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~lllllllllllllrrrllllll~~~~~~~~~~~~~~~~~~~~~~~.C
} #i fi 1 11W11 1 1.1 11 11 LlilI lfll

f i i X ' - - 11111='1111 II~~~~~~~~~~~~~~~lIIIIIIIIIII 111111 O~~~~~~0

a II 2.. 11 1111111111111
I' I 11111 . =i-i'

3

NORCIO AND CHMURA

Module Development Activities

The front page of the Weekly Activity Report form is primarily used to record hours spent on
module development activity, where module means information hiding module [2]. As can be seen in
Chart 1, SCR development activity hours are captured for each engineer by a specific module within
the hierarchy (e.g.,/ Device Interface) and by design, code, and test categories. Space is provided for
project personnel to supply the names of the modules below the first two levels.

The primary product of design activity is the development of a module interface specification. A
typical interface specification for the Device Interface module [81 is presented in Chart 3. Design
activity is reported as hours devoted to design creating, design discussing, design peer reviewing, and
design formal reviewing activities. Design creating activity is time devoted to thinking about a design
including redesigning or documenting. Design discussing activity is time devoted to discussing design
issues via a computer message or directly with a colleague to assist with the design. Design peer review-
ing activity is time devoted to reading or commenting on (informally) design documentation produced
by another project member in order to assist with the design. Design formal reviewing activity is time
spent in a formal design review, typically at the Naval Weapons Center, which maintains the current
operational flight program.

Coding activity is reported as hours devoted to pseudocode, Extended Computer code,* C code
and TC codet activities. Pseudocode activity is further reported as hours devoted to code creating,
code discussing, and code peer reviewing activities. EC code, C code, and TC code activities are
reported as hours devoted to code creating, code discussing, code peer reviewing, and code programmer
testing activities. Code creating, code discussing, and code peer reviewing activities have definitions similar
to their counterparts. Code programmer testing activity is time devoted by programmers to computer-
based evaluation of their own code to convince themselves of its correctness.

Test activity is reported as hours devoted to test preparation, test conducting, and test reviewing
results activities. Test preparation activity is time devoted to creating, discussing, and reviewing plans
and procedures for computer-based testing of a module prior to formal subset testing. Test conducting
activity is time devoted to set up and execution of module test procedures on a computer. Test review-
ing results activity is time devoted to analyzing, discussing, and documenting results of a module test.

Other Activities

The back page of the weekly Activity Report form is used to record hours spent on software test-
ing and miscellaneous activities. Software testing activity is reported as hours spent on general issues of
computer-based testing and on testing of system subsets. Miscellaneous activity is reported as hours
spent on activities not included in any of the above definitions.

OVERVIEW OF SCR PROJECT ACTIVITIES

From January 1978 to February 1985, over 55,000 activity hours have been reported. Experi-
ments have been performed to provide reasonable assurance that the reported hours accurately reflect
project activity and are appropriately categorized [9]. Figure 1 represents the monthly accumulation of
hours expended on all activities. Figure 2 shows the monthly accumulation of hours expended in the
top level categories. Software Structures (SS) effort is time spent defining and documenting hierarchi-
cal module structure in the A-7E module guide [6]. Software Modules (SM) effort is time devoted pri-
marily to specifying and implementing modules. Software Testing (ST) effort is time spent on valida-
tion testing of subsets, and Miscellaneous (MISC) is time spent on all other activities such as travel and
project control. Most SCR work so far has concentrated on SM development.

*The Extended Computer is one of the modules of the program. EC code is consists of invocations of programs on this
module's interface.
tTC code is the assembly language code for the IBM System 4 PI model TC-2 computer. The operational flight program runs on
this machine.

4

NRL REPORT 8974

e-n.

DI.WOG: WEIGHT ON GEAR SENSOR

1. Introductlon

The weight on gear device is a sensor that detects whether or not the aircraft is resting on its
landing gear. This data can be used to infer whether or not the aircraft is airborne.

2. INTERFACE OVERVIEW

2.1. ACCESS PROGRAM TABLE

Program Parameters Deacription Undesired events

+GWEIGHT-ON-GEAR+ pl: boolean; 0 !+WOG+!
None

3. LOCAL TYPE DEFINITIONS None.

4. DICTIONARY

!+WOG+! TRUE iff weight on landing gear detected.

5. UNDESIRED EVENT DICTIONARY None.

6. SYSTEM GENERATION PARAMETERS None.

Chart 3 - Sample design specification

5

NORCIO AND CHMURA

Jan 79 Jan 8

TOTAL

30 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MONTH

Fig. l- SCR activity

/ M

/. M IS C

...S T.
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 2 - SCR area activities

Figure 3 shows the monthly accumulation of hours expended in the Software Modules category
on design, code (including pseudocode), and test activities. Over 75% of all reported software module
activity is module design including redesign. This is consistent with the emphasis in the SCR
methodology on extensive design with the expectation of significant reductions in coding, testing, and
maintenance efforts [101.

There are three categories of first-level SCR modules: Hardware Hiding modules, Behavior Hiding
modules, and Software Decision modules [6]. These, in turn, include ten categories of second-level
modules, listed in Table 1. Each of the second-level modules is organized into several submodules
(third-level modules), and some of these are further modularized. The EC module, with seven levels
of submodules, has the deepest module structure.

Six of the second-level modules have accumulated more than 1000 hours of activity; these are
EC, DI, FD, SS, AT, and PM. The six also have complete module interface specifications that are
baseline or nearly baselined. In Figures 4 through 9, the monthly accumulation of hours expended on
total activity and on design, code, and test activities is presented for each module.* Only the EC and
DI modules have appreciable amounts of coding and testing activities.

*Vertical lines in Figures 4 through 21 represent the dates on which baseline interfaces specifications for the respective modules
were released. The absence of these lines on a specific plot indicates that no baseline documents have been released for that
module.

6

60000

50000

40000

30000

20000

10000

Jan 78

35000

30000

25000

20000

15000

10000

CD)

0
X
wi

C-)

Ul)

0
X
wU

C.)

50100

0

NRL REPORT 8974

.In 7Q JIn 80 Jan

., , DESIGN

K

____ ____ ____TESTING
81 Jan 82 Jan 83 Jan.84 Jan 85

81 Jn8 a83 Jn4 a8

MONTH

Fig. 3 - Software module activities

Table 1 - Abbreviations and Names of
Second-Level Software Modules

Abbreviation Name
AT Applications Data Type
DB Data Banker
DI Device Interface
EC Extended Computer
FD Function Driver
FLT Filter
PM Physical Model
SG System Generation
SS Shared Services
SU System Utilities

NOV

SFP
16000 - Y

JUL

14000 -MR
MAR .

12000 FEB

10000 JAN

8000

6000 /

4000.

2000

0

Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84

MONTH

M N
A 0

Ade DESIGN

- O ODNG,

m-TESTING

Jan 85

Fig. 4 - Extended computer activities

7

30000 -

25000 -

U)

0I
W

I-
Z4
-J

0)

20000

15000

10000

5000

Jan 78

U)

0I
F:
1-J

0j

�11-`,_

NORCIO AND CHMURA

N M S D
O A E E

4500 V R P CAL

4000

Cl) 3500

' 3000 DESIGN

Lu2500

2000

E 1500 /G. c0NG

L)1000

500

0
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MNtTH

Fig. 5 - Device interface activities

N F
1800 0 E

V B
1600 TOTAL

1400

c 1200 DESIGN0=
U 1000

5 800

2 600
C-)

400

200 r r rrrx . / .t .t .~ _ _ ..=C0DING
200

0 TESTING
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 6 - Function driver activities

8

NRL REPORT 8974

2000

1800 /

1600

C 1400
0
I 1200
Lu

, 1000 S

v 800 E E
P B

= 600

400

200 / ODNG

0 . rr..i.,.TESTING
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 7 - Shared services activities

A F 0

1600 * U E CG B T
1400 - /- TOTAL

Un 1200 -
Cl) 120 DESIGN
MO 1000 .
Lu

F: 800

600

U400

2-xOODING
200 /

0 ... TESTING
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 8 - Applications data type activities

9

NORCIO AND CHMURA

4500 -

4000- TOTAL

3500 - DESIGN

D 30000
w 2500

4 2000

E 1500

1000

500 CODING

0 -f 11-rff v! r! air 'M %_ Tr M r TESTING
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MNTH

Fig. 9 - Physical model activities

ANALYSES OF MODULE DESIGN DATA

As mentioned above, the SCR project emphasizes careful design which is reflected by the fact that
design activity accounts for over 75% of all reported software module activity. One of the purposes of
the data analyses was to identify parameters that characterize the design processes and offer predictive
capabilities concerning them. Plots were constructed in order to characterize monthly hours expended
on the subactivities of module design: design creating (DC), design discussing (DD), design peer
reviewing (DR), design formal reviewing (DF), as well as total design (D). Unfortunately, characteris-
tic patterns were not readily apparent.

Subsequently, it was decided to examine the accumulation of hours expended on total design
subactivities. This approach is considered appropriate because each data point reflects the history of
design activities up to that point in time. Thus, the cumulative total design hours for a module is
defined by:

n
CumDn = D,

i=t

where Di is the monthly total of all design activities on a module for month i. (Note that Di includes
design activity on all subniodules of the module.) Because data are available for all the months
between January 1978 and February 1985, n has values from 1 to 86. Cumulative design creating hours
for a module is defined by:

n
CumDCn = I DCi,

i= t

where DCi is the monthly design creating subactivity for a module (including all submodules) for
month i. Again, n has values from 1 to 86. Similar definitions apply for CumDDn and CumDRn. Fig-
ures 10 through 15 show the significant cumulative design activities for each module.

An earlier study [91 highlighted the fact that ratios between activity categories provide valid and
potentially useful metrics of SCR project activity. STE Project personnel intuitively suspected that
ratios between activity categories could provide descriptive features of the SCR methodology that might
be generally applicable to software design. Consequently, six ratio series between
CumDCn, CumDDn, and CumDRn were computed. For example, the ratio between cumulative design
discussing and cumulative design creating is defined as:

10

NRL REPORT 8974

(CumDD/CumDC)n = CumDC '

where n has values from 1 to 86. The other five ratios, similarly defined, are
(CumDC/CumDD)n, (CumDC/CumDR)n, (CumDD/CumDR)n, (CumDR/CumDC)n, and (CumDR/
CumDD)n. These ratios were correlated with CumDn over the 86 reporting months. Pearson correla-
tion coefficients [11] are presented in Table 2. Next, for each module the ratio between monthly DC,
DD, and DR were computed (e.g. DCn/DDn, DCn/DRn, and so on) and correlated with the total
monthly Ds and with the monthly CumDs. These coefficients are presented in Tables 3 and 4.

7000

6000

5000

4000

3000

2000

1000

0 1 BUIGI f

Jan 78 Jan 79

SEP

JUL

JAN

M N
A 0
Y V

, CREATING

iI.,,, .1~ a,.- . FEADING
do* -4w_-__ -r r T-REVIEW.................. rn¶i.rrrtrrl Y.
Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 10 - Extended computer design activities

N M S
O A E

2500

2000

1500

1000

500

0 I-k-r
Jan 78

E
E
C

Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MONTH

Fig. II - Device interface design activities

11

Cl)
0I:

Uj

'n0
X

I-
4j-J

U

NORCIO AND CHMURA

N F
1200 0 E

V B

1000 ,CREATING

ci)

) 8000x
Lu

p 600

400

2DISCUSSING
200/ f.- , , , ,READING/| | S | ;; e ~~REVIEW

0

Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MONTH

Fig. 12 - Function driver design activities

1600 CREATING

1400

cn 1200 -

0 1000

c

Lu

i.. 800 -
E 600 E E

P B
U 400

200 - |o, DISCUSSING
20rREADING

0 - ,. ... REVIEW
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 13 - Shared services design activities

12

NRL REPORT 8974

A F 0
U E C

- CREATING

DISCUSSING

Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

R H

Fig. 14 - Applications data type design activities

r CREATING

DISCUSSING

0 l.. f q
Jan 78 Jan 79

READING

Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MONTH

Fig. 15 - Physical model design activities

Table 2 - Pearson Correlation Coefficients Between CumD and Cum. Ratios

CumDC CumDC CumDD CumDD CumDR CumDR
eCumDD CumDR CumDC CumDR CumDC CumDD

AT -0.4034 0.1245a 0.9774 0.9609 0.7483 -0.2006a
DI 0.0560a -0.1998a 0.6574 0.1002a 0.8324 0.8124
EC -0.3785 -0.3091 0.9492 0.6530 0.5436 0.5436
FD 0.7565 -0.0897a 0.9482 -0.0252a 0.1001a 0.9575
PM -0.4090 -0.4144 0.9052 0.1429a 0.9235 0.3801
SS 0.9181 0.8665 0.5156 0.8408 -0.3675 -0.0568

aNot significant at the p>.005 level.

13

700

600

Cl)
c 500

0
=
u 400

5 300

3 200

100

0
Jan 78

3500

3000

Cl)
c 2500
D0
Lu 2000

5 1500

U 1000

500

NORCIO AND CHMURA

Table 3 - Pearson Correlation Coefficients Between D and Monthly Ratios

Module DC/DD DC/DR DD/DC DD/DR DR/DC DR/DD
AT 0.3099 0.4031 0.3548 0.3048 0.3664 0.1572a
DI 0.3759 0.4829 0.1040a 0.2044a 0.0227a 0.2075a
EC -0.0008a 0.3972 0.3401 0.5396 0.0040a -0.0998a
FD 0.6470 0.5190 0.1305a 0.4813 0.1042a 0.3796
PM 0.3083 0.5845 0.3175 0.6581 0.0461a 0.3491
Ss 0.6509 0.6040 0.0461 a 0.4309 0.1248a 0.2578

aNot significant at the p>.005 level.

Table 4 - Pearson Correlation Coefficients Between CumD and Monthly Ratios

Module DC/DD DC/DR DD/DC DD/DR DR/DC DR/DD

AT 0.0532a 0.1667a 0.1169a 0.0843a -0.0177a -0.1287a
DI -0.1693a -0.1414a 0.0344a -0.0879a 0.0683a 0.0352a
EC -0.0932a 0.3933 0.3467 0.5236 -0.0248a -0.0886a
FD -0.0034a 0.0603a 0.1409a 0.0293a 0.1032a 0.1282a
PM 0.4034 0.3568 0.1182a 0.2205 0.170a 0.2582
Ss 0.0547a -0.0447a 0.1556a -0.0531 a -0.0177a 0.0815a

aNot significant at the p.>.005 level.

RESULTS

An examination of the correlation coefficients reveals that the ratio (CumDD/CumDC)n corre-
lates consistently well with CumD ,, as shown in Table 2.* This relationship is evident from the plots
of the ratios. In Fig. 16, the monthly ratio for (CumDD/CumDC)n is plotted for the EC module.
Comparing this with Fig. 10, one can see that design activity surges are characterized by prior or con-
.comitant dramatic increases in this ratio. When this ratio remains constant, it is an indication that
design activity has stabilized. Increases in this ratio seem to indicate progress. Consequently, we refer
to this as the progress indicator ratio (PIR).

Although the EC module is extremely large and complex, the relationship seems strong. A large
jump in design activity follows the large rise of the PIR. However, design activity for this module is
not quite stabilized, and the late downward trend in the ratio indicates increasing creating time relative
to discussing time.

The same patterns are also present for the DI module. As can be seen in Figs. 12 and 17, the
dramatic increase in design activity follows a dramatic increase in the progress indicator ratio. This
same relationship holds for the FD, SS, AT, and PM modules. See Figs. 18 through 21.

Coefficients of determination (r2), as defined in Ref. 11, between CumD. and
(CumDD/CumDC)n are presented in Table 5 for each module. This ratio seems to explain a high per-
centage of the variation of CumDn.

The analyses provide supporting evidence that the ratio (CumDD/CumDC)n is an important
measure of design activity progress in developing modules for complex software. When the PIR
becomes constant, design activity appears to be at a very low level or even nonexistent. When this
ratio increases, design activity increases dramatically. The relationship between this ratio and CumDn is
the strongest of all the possible relationships examined in this study. In at least one module, this ratio
can explain over 95% of the variation in CumDn. In the remaining modules, variations in
(CumDD/CumDC)n can explain a surprisingly high degree of the variations in CumDn.

'The probability of finding this significant result is not increased because the same analyses were conducted over different data
sets.

14

NRL REPORT 8974

0.6

0.5

0.4

0
0.3

0.2

0.1

0.0 111,,. I .I11,1r.1r.1 ... I...... .,1
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 16 - Progress indicator ratio for
extended computer module

0.6

0.5

0.4

0
<-' 0.3

0.2

0.1

N M S D
O A E E
V R P C

I I I I

0.0 I -i.1..1..1. 1
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

MONTH

Fig. 17 - Progress indicator ratio for
device interface module

15

In..

NORCIO AND CHMURA

0.6

0.5

0.4

0.3

0.2

0.1

0.0
Jan 78 Jan 79

0.6

0.5

0.4

'- 0.3

0.2

0.1

0.0
Jan 78 Jan 79

N
0
V

F
E
B

1T 111 liAl .a..rJan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85

Fig. 18 - Progress indicator ratio for
function driver module

I I

S F
,E E

Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MONTHI

Fig. 19 - Progress indicator ratio for
shared services module

16

0
Ip

tr-��

NRL REPORT 8974

Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85
MfNTH

Fig. 20 - Progress indicator ratio for
applications data type module

0.0 (1.r I4..
Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84

MONTH

Fig. 21 - Progress indicator ratio for
physical model module

Table 5 - Coefficientsa of Determination (r2)
between CumD and CumDD/CumDC

Module r2

AT 0.9552
DI 0.4322
EC 0.9010
FD 0.8992
PM 0.8194
SS 0.2658

aAll are significant at the p> .005 level.

17

0.6

0.5

0.4

0
' 0.3

0.2

0.1

0.0
Jan 78

0.6

0.5

0.4

0
'-' 0.3

0.2

0.1

Jan 85

NORCIO AND CHMURA

CONCLUSIONS

A natural conclusion is that discussion between software designers is a critically important factor
in the design of information-hiding modules for complex software. When the release dates for specifi-
cation baseline (e.g., Ref. 8) are examined with the PIR, the PIR seems to be indicating the complete-
ness of the baseline specifications. When a baseline appears before this ratio rises sharply or during a
sharp rise, the baseline is probably far from complete. Abstract interface specifications would seem to
become reasonably stable only after a sharp rise and settling of this ratio. Plotting this ratio over time
may provide for the software manager a meaningful tool with which to track design progress. If the
PIR has not surged and stabilized, the design is probably not finished irrespective of personnel claims
and published baseline documents.

In addition, the PIR has an attractive property not found in a monthly plot of CumDn. The range
of the y-axis is constant over time and over other modules and projects. Therefore, it is possible to
compare design progress on one module or project to another by using this ratio. The PIR does, how-
ever, have one possible negative property. Because it involves cumulative sums, the accumulation of
earlier design hours can dampen the impact of later variations in design activity. The PIR for the EC
module indicates, however, that this possible flaw may be more theoretical than practical.

There is no claim that the PIR is a measure of design completeness. There are clearly other rea-
sons why design activity on a specific software module may have stabilized; for example, personnel may
have shifted work to another module or they may have been vacation. However, the PIR ratio seems
to indicate when work on a piece of software is definitely not finished. If design completion is claimed
prior to a rise and settling in this ratio, there is probably more work that needs to be done on that
module.

It is necessary that this analysis be replicated on other large scale software development projects to
determine whether the PIR behaves similarly in other software development environments using dif-
ferent methodologies. It is intuitively appealing that discussion between project members necessarily
enhances the design of software modules. It would also be useful to quantify the relative surges in the
PIR. That is, there is practical importance in knowing that a given percentage increase in the PIR is
customarily followed by a predictable percentage increase in design activity. This, too, requires replicat-
ing these analyses in several different software design environments. Unfortunately, these data are dif-
ficult to collect and it is, perhaps, even more difficult to validate their accuracy.

Finally, it is logical to examine coding data for these relationships. It seems reasonable to accept
the importance of discussion in the design process. Its importance in the coding and testing processes
is not as clear. These data do exist in the SCR data base and plans are under way to examine them.

ACKNOWLEDGMENTS

The authors owe a special debt of gratitude to Dr. Davis Weiss who first suggested that activity
ratios could provide useful measures of design activities. In addition, through several readings of this
report, he offered many helpful suggestions and comments. Special mention must also be given to Ms.
Kathryn Kragh who validated reported SCR activity data, entered them into the computer database, and
checked the accuracy of each entry. Without her diligence, the data analyses could have possibly taken
years. The authors also thank Mr. Jeff Sabat who prepared many data plots as well as Dr. John O'Hare
and Mr. Paul Clements for their technical advice and suggestions.

18

NRL REPORT 8974

REFERENCES

1. P.C. Clements, "Software Cost Reduction Through Disciplined Design," 1984 NRL Review, pp.
79-87 (1985).

2. D.L. Parnas, "On the Criteria to Be Used in Decomposing Systems into Modules," Commun. ACM
15, 1053-1058 (1972).

3. D.L. Parnas, "Use of Abstract Interfaces in the Development of Software for Embedded Computer Sys-
tems," NRL Report 8047, June 1977.

4. E.W. Dijkstra, "Cooperating Sequential Processes," pp. 43-112 in Programming Languages, F.
Genuys, ed. (Academic Press, New York, 1968).

5. K.L. Heninger, J.W. Kallander, J.E. Shore, D.L. Parnas, and Staff, "Software Requirements for the
A-7E Aircraft," NRL Memorandum Report 3876, Nov. 1978.

6. K.H. Britton and D.L. Parnas, "A-7E Module Guide," NRL Memorandum Report 4702, Dec. 1981.

7. V.R. Basili and D.M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"
IEEE Trans. Software Eng. SE-10(6), 728-738 (1984).

8. R.A. Parker, K.H. Britton, D.L. Parnas, and J.E. Shore, "Abstract Interface Specifications for the A-
7E Device Interface Module," NRL Memorandum Report 4385, Nov. 1980.

9. L.J. Chmura and A.F. Norcio, "Accuracy of Software Development Activity Data: The Software Cost
Reduction Project," NRL Report 8780, Dec. 1983.

10. D.L. Parnas and P.C. Clements, "A Rational Design Process: How and Why to Fake IT," IEEE
Trans. Software Eng. SE-12(2), 251-257 (1986).

11. W.J. Dixon and F.J. Massey, Jr., Introduction to Statistical Analysis (McGraw-Hill Book Co., Inc.,
New York, 1969).

19

